If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+12y-12=0
a = 3; b = 12; c = -12;
Δ = b2-4ac
Δ = 122-4·3·(-12)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{2}}{2*3}=\frac{-12-12\sqrt{2}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{2}}{2*3}=\frac{-12+12\sqrt{2}}{6} $
| 4x+220=308 | | 4x-17=11x-46 | | 164=x² | | 6+5x-2=3x+1 | | 24+n=4 | | 5(2x-3=)=45 | | 3(p+2)+10=25 | | 2^(x+6)=112 | | 2^x+6=112 | | 16=2(t-1)-1 | | 28=2(4f+3 | | (8)(2^x)=5^(-8+8) | | F(-4)=4x+1 | | F(-1)=x^ | | 1+7x=6x+6 | | 139+(3d+6)=180 | | (8)(2^x)=5^0 | | 36-x-5x=12 | | |300-48t|=60 | | (3d+6)+139=180 | | Y=2x+6A(4,1) | | (3d+6)°+132=180 | | 4+3(t+2)=10, | | 2/3y+y-4=32 | | 6-(2x+3)=7+8(2+x) | | Y=5x+2A(2,2) | | |2x-6|+5=1 | | -14-9m=2m-10 | | 1/4k-20=60 | | (.50)^(9900/x)=0.30 | | Y=4x-6A(1,3) | | G(3)=x^+1 |